

EddyCus® inline MCM – Metrology Chamber Module

P MCM 22

Highlights

- ▶ Non-contact and non-destructive
- ► Near-process monitoring
- ▶ High-speed and accurate
- ► High repeatability and long term stability
- ► Test directly on product wafers
- ► Easy integration into tools

Sensor Series

- ► Resistivity (mOhm·cm)
- Metal layer thickness (nm, μm)
- ► Uniformity / homogeneity
- ▶ Defects and effects

- ► Sheet resistance (Ohm/sq)
- Metal substrate thickness (μm)

Applications

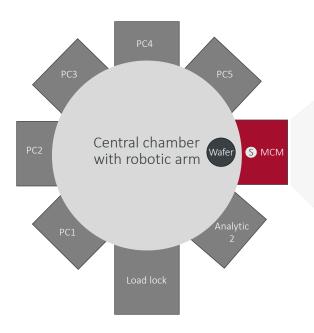
- Wafer testing
- ▶ Thin film layer characterization
- ▶ Material characterization
- ► Imaging and mapping
- ► Defect detection
- ▶ Integrity assessment
- ► Material sorting
- ► Sputter target wear level monitoring

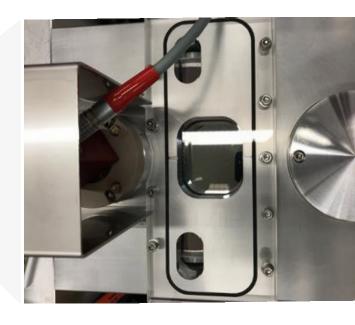
Materials

- Semiconductors
 - ► Si
 - ▶ WBG SiC, SiSiC, GaN
 - ► GaAs, GaP, InP, GaAsP etc
- Metals
- ► Alloys
- ► Graphite
- ► Graphene
- ▶ Compounds
- Composites

SURAGUS GmbH Maria-Reiche-Strasse 1 01109 Dresden Germany

For further questions: +49 351 32 111 520


Visit us at: www.suragus.com www.suragus.com/calculator www.suragus.com/EddyCusInline


Engineered and Made in Germany

EddyCus® inline MCM – Metrology Chamber Module

Measurement technology	Non-contact high frequency eddy current sensor
Place of measurement	In-vacuo in dedicated metrology chamber
Substrates	Wafer, glass etc.
Substrate sizes	150 / 200 / 300 mm (different sizes of MCM are available)
Measurement gap size	5 – 50 mm (depending on wafer handler)
Sensor sizes (L x W x H) in mm	Sensor S SemiVac: 80 x 100 x 65
Conductive layers	Metals, alloys and other conductive layers
Sheet resistance measurement range	0.001 – 1,000 Ohm/sq
Thickness measurement of metal films (e.g. Cu, Al, Ag, Au, Ni, Ti, Ta, Pt, W)	1 nm – 2 mm (in accordance with sheet resistance)
Measurement types	Sheet resistance, metal thickness, resistivity, wafer temperature
Environment	In-vacuo, wafer temperatures up to 500°C
Sample rate	1 / 10 / 50 / 100 / 1,000 measurements per second
Interfaces	UDP, .Net libraries, TCP, Modbus, Profinet, analog/digital

Motivation for Near-Process Sensor Integration

Obtain relevant information on deposition process as early as possible

- ► Sheet resistance (metal thickness by conversion)
- ▶ Wafer temperature (by temperature sensor)
- ▶ Reduce cost and increase throughput
 - ▶ Gain of tool time due reduction of test wafer runs
 - ► Reduce tool time for test wafer validation (target material, equipment time, offline testing, operator time)
- ► Fine-tune quality by enhanced process control
 - ► Direct measurement on process wafer
 - ▶ Instant process feedback and enhanced R2R Control
 - ▶ Effect of target life time changes
 - ▶ Understand chamber to chamber effects and first wafer effects
- ► Faster ramp-up / setup of new tools / targets / processes
 - ▶ Direct uniformity measurement and power adjustment
 - ► Control of sputter power for compensation target changes

